The Intersection Exponent For Simple Random Walk

نویسندگان

  • Gregory F. Lawler
  • Emily E. Puckette
چکیده

The intersection exponent for simple random walk in two and three dimensions gives a measure of the rate of decay of the probability that paths do not intersect. In this paper we show that the intersection exponent for random walks is the same as that for Brownian motion and show in fact that the probability of nonintersection up to distance n is comparable (equal up to multiplicative constants) to n ? .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cut times for Simple Random Walk Cut times for Simple Random Walk

Let S(n) be a simple random walk taking values in Z d. A time n is called a cut time if S0; n] \ Sn + 1; 1) = ;: We show that in three dimensions the number of cut times less than n grows like n 1? where = d is the intersection exponent. As part of the proof we show that in two or three dimensions PfS0; n] \ Sn + 1; 2n] = ;g n ? ; where denotes that each side is bounded by a constant times the ...

متن کامل

Multifractal Nature of Two Dimensional Simple Random Walk Paths

The multifractal spectrum of discrete harmonic measure of a two dimensional simple random walk path is considered. It is shown that the spectrum is the same as for Brownian motion, is nontrivial, and can be given in terms of a quantity known as the intersection exponent.

متن کامل

Cut times for Simple Random Walk

Let S(n) be a simple random walk taking values in Zd. A time n is called a cut time if S[0, n]∩ S[n+ 1,∞) = ∅. We show that in three dimensions the number of cut times less than n grows like n1−ζ where ζ = ζd is the intersection exponent. As part of the proof we show that in two or three dimensions P{S[0, n]∩ S[n+ 1, 2n] = ∅} n−ζ , where denotes that each side is bounded by a constant times the...

متن کامل

N ov 2 00 4 The Effect of Finite Memory Cutoff on Loop

Let Sn be a simple random walk (SRW) defined on Z . We construct a stochastic process from Sn by erasing loops of length at most N , where α ∈ (0,∞) and N is the scaling parameter that will be taken to infinity in determining the limiting distribution. We call this process the N loop erased walk (N LEW). Under some assumptions we will prove that for 0 < α < 1 1+2ζ , the limiting distribution is...

متن کامل

Geometric and Fractal Properties of Brownian Motion and Random Walk Paths in Two and Three Dimensions

There is a close relationship between critical exponents for proa-bilities of events and fractal properties of paths of Brownian motion and random walk in two and three dimensions. Cone points, cut points, frontier points, and pioneer points for Brownian motion are examples of sets whose Hausdorr dimension can be given in terms of corresponding exponents. In the latter three cases, the exponent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2000